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Outline
• Background

• Dimensional reduction and QCD
• The center symmetry and the Wilson line

• Construction of the new theory
• Degrees of freedom, potentials
• Perturbative matching to full theory
• The Z(3) domain wall

• Phase diagram of the new theory
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QCD and dimensional reduction
• Conventional DR: at highT ≫ gT , integrate out

all non-static modes (m ∼ 2πT ) to obtain3d
effective theory for the static modes

LEQCD = g−2
3

{

1
2 Tr F 2

ij + Tr
[

(DiA0)
2
]

+ m2
E Tr (A2

0) + λE Tr (A4
0)

}

+ δLE,

g3 ≡
√

Tg, mE ∼ gT, λE ∼ g2
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all non-static modes (m ∼ 2πT ) to obtain3d
effective theory for the static modes

LEQCD = g−2
3

{
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2 Tr F 2

ij + Tr
[

(DiA0)
2
]

+ m2
E Tr (A2

0) + λE Tr (A4
0)

}

+ δLE,

g3 ≡
√

Tg, mE ∼ gT, λE ∼ g2

• New theory sufficient to describe equilibrium
thermodynamics at length scales& 1/(gT )

• Parameters available through comparison of long
distance correlators in EQCD and full QCD
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• Partial success: impressive perturbative results
derived at highT
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• Fundamental problem: all symmetries of original
theory arenot respected by the reduction!
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The center symmetry
• Full gauge symmetry of SU(3) Yang-Mills theory

Aµ(x) → s(x) (Aµ(x) + i ∂µ) s(x)†, s(x) ∈ SU(3)

s(x + β êt) = z s(x) , z ∈ Z(3)
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s(x + β êt) = z s(x) , z ∈ Z(3)

under which the Wilson line transforms as a Z(3)
fundamental

Ω(x) ≡ P exp

[

i

∫ β

0

dτ A0(τ,x)

]

Tr Ω(x) → z Tr Ω(x)

BNL, 7/31/06 – p. 5/18



The center symmetry
• Full gauge symmetry of SU(3) Yang-Mills theory

Aµ(x) → s(x) (Aµ(x) + i ∂µ) s(x)†, s(x) ∈ SU(3)

s(x + β êt) = z s(x) , z ∈ Z(3)

under which the Wilson line transforms as a Z(3)
fundamental

Ω(x) ≡ P exp

[

i

∫ β

0

dτ A0(τ,x)

]

Tr Ω(x) → z Tr Ω(x)

• Ω order parameter for deconfinement transition
• |〈Tr Ω(x)〉| = e−β ∆Fq(x)
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• In deconfined phase, effective potential forΩ has
degenerate minimaΩmin ∼ ei2πn/311, n ∈ {0, 1, 2}
• Tunnelings between different vacua important

nearTc

• At (1st order) phase transition quadruple point
with phase coexistence with the confining one
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• In deconfined phase, effective potential forΩ has
degenerate minimaΩmin ∼ ei2πn/311, n ∈ {0, 1, 2}
• Tunnelings between different vacua important

nearTc

• At (1st order) phase transition quadruple point
with phase coexistence with the confining one

• EQCD Lagrangian derived expanding effective
potential aroundA0 = 0
• Z(3) invariance lost
• Complex Z(3) minimaA0 = 2πT

3 completely
outside the domain of validity of eff. theory

• (One important) cause of problems in EQCD
phase diagram and predictions nearTc
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Z(3) invariant theory
• Want to build a superrenormalizable3d effective

theory that
• Reduces to EQCD at highT
• Respects Z(3), correct domain wall physics

BNL, 7/31/06 – p. 7/18



Z(3) invariant theory
• Want to build a superrenormalizable3d effective

theory that
• Reduces to EQCD at highT
• Respects Z(3), correct domain wall physics

• Minimal set of dof’s:Ai andΩ
• Ω ∈ SU(3) ⇒ polynomial Lagrangian

non-renormalizable

BNL, 7/31/06 – p. 7/18



Z(3) invariant theory
• Want to build a superrenormalizable3d effective

theory that
• Reduces to EQCD at highT
• Respects Z(3), correct domain wall physics

• Minimal set of dof’s:Ai andΩ
• Ω ∈ SU(3) ⇒ polynomial Lagrangian

non-renormalizable

Sigma Models
Non-linear Linear
φ · φ = 11 PolynomialV
Same long distance physics!
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Z(3) invariant theory
• Want to build a superrenormalizable3d effective

theory that
• Reduces to EQCD at highT
• Respects Z(3), correct domain wall physics

• Minimal set of dof’s:Ai andΩ
• Ω ∈ SU(3) ⇒ polynomial Lagrangian

non-renormalizable
• New (old) idea: replaceΩ byZ ∈ GL(3,C)

• Coarse-grained version ofΩ
• After gauge fixing, contains10 − 2 = 8

unphysical dof’s that are chosen heavier
(m ∼ T ) than the physical ones (m . gT )
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• Require gauge and Z(3) invariance

Z(x) → s(x)Z(x) s(x)†,

A(x) → s(x) (A(x) + i∇) s(x)†,

Z(x) → e2πin/3 Z(x)
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Z(x) → e2πin/3 Z(x)

and compose Lagrangian as

L = g−2
3

{

1
2 Tr F 2

ij + Tr
(

DiZ†DiZ
)

+ V (Z)
}

,

V (Z) = V0(Z) + g2
3 V1(Z)

• V0 “hard”; biased towards unitaryZ
• V1 “soft”; lifts degeneracy and ensures high-T

matching to EQCD
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V (Z) = V0(Z) + g2
3 V1(Z)

V0(Z) = c1 Tr
[

Z†Z
]

+ c2

(

det
[

Z
]

+ det
[

Z†])

+ c3 Tr
[

(Z†Z)2
]
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• With c2 < 0 < c3 andc2
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by Z = 1
3vΩ with Ω ∈ SU(3) and

v ≡ 3
4

(−c2 +
√

c2
2 − 8c1c3

c3

)

BNL, 7/31/06 – p. 9/18
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3 V1(Z)

V0(Z) = c1 Tr
[

Z†Z
]

+ c2

(

det
[

Z
]

+ det
[

Z†])

+ c3 Tr
[

(Z†Z)2
]

• Gives heavy fields their masses

• With c2 < 0 < c3 andc2
2 > 9c1c3, V0 minimized

by Z = 1
3vΩ with Ω ∈ SU(3) and

v ≡ 3
4

(−c2 +
√

c2
2 − 8c1c3

c3

)

• Invariant under extra SU(3)×SU(3) symmetry
Z(x) → AZ(x)B, A,B ∈ SU(3)
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V (Z) = V0(Z) + g2
3 V1(Z)

V1(Z) = c̃1 Tr
[

M †M
]

+ c̃2

(

Tr [M 3] + Tr [(M †)3]
)

+ c̃3 Tr
[

(M †M)2
]

,

M ≡ Z − 1
3TrZ11 ≡ Z − 1

3L11
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V (Z) = V0(Z) + g2
3 V1(Z)

V1(Z) = c̃1 Tr
[

M †M
]

+ c̃2

(

Tr [M 3] + Tr [(M †)3]
)

+ c̃3 Tr
[

(M †M)2
]

,

M ≡ Z − 1
3TrZ11 ≡ Z − 1

3L11

• All c̃i ∼ g0, but overallg2
3 ⇒ contributions to

masses and coupling constants suppressed byg2

with respect toV0

• Vital for high-T matching to EQCD

• Assumingc̃3 > 0 andc̃2
2 < c̃1c̃3, V1 minimized by

M = 0, i.e. Z = 1
3 L(x)11
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• V (Z) minimized by
• c2

2 > 9c1c3: Z = v
3 e2πin/311

• c2
2 < 9c1c3: Z = 0
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• V (Z) minimized by
• c2

2 > 9c1c3: Z = v
3 e2πin/311

• c2
2 < 9c1c3: Z = 0
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Matching to EQCD
• To determine parametersci andc̃i, consider

fluctuations around non-trivial Z(3) minima

Z = e2πin/3
{

1
3v 11 + g3

[

1√
6
(φ + iχ)11 + (h + ia)

]}
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Matching to EQCD
• To determine parametersci andc̃i, consider

fluctuations around non-trivial Z(3) minima

Z = e2πin/3
{

1
3v 11 + g3

[

1√
6
(φ + iχ)11 + (h + ia)

]}

and write the Lagrangian in terms of the shifted fields

L = Vmin + 1
2
Tr F 2

ij + 1
2

[

(∂iφ)2 + m2
φ φ2

]

+ 1
2

[

(∂iχ)2 + m2
χ χ2

]

+Tr
[

(Di h)2 + m2
h h2

]

+ Tr
[

(Di a)2
]

+ Vint(φ, χ, h, a)
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Matching to EQCD
• To determine parametersci andc̃i, consider

fluctuations around non-trivial Z(3) minima

Z = e2πin/3
{

1
3v 11 + g3

[

1√
6
(φ + iχ)11 + (h + ia)

]}

and write the Lagrangian in terms of the shifted fields

L = Vmin + 1
2
Tr F 2

ij + 1
2

[

(∂iφ)2 + m2
φ φ2

]

+ 1
2

[

(∂iχ)2 + m2
χ χ2

]

+Tr
[

(Di h)2 + m2
h h2

]

+ Tr
[

(Di a)2
]

+ Vint(φ, χ, h, a)

• φ, χ andh heavy fields, with masses givingci’s

c1 = 1
6(m

2
χ − 3m2

φ) , c2 = −m2
χ/v ,

c3 = 3
4(m

2
χ + 3m2

φ)/v
2 , m2

h = m2
χ + m2

φ
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• At high enoughT tunnelings between different
vacua exponentially suppressed
• Integrate out heavy fieldsφ, χ andh to make

contact with EQCD

BNL, 7/31/06 – p. 13/18



• At high enoughT tunnelings between different
vacua exponentially suppressed
• Integrate out heavy fieldsφ, χ andh to make

contact with EQCD
• Result: effective theory fora andAi

Llight = 1
2 TrF 2

ij + Tr[(Di a)2 + m2
a a2 + λ̃ a4]

BNL, 7/31/06 – p. 13/18



• At high enoughT tunnelings between different
vacua exponentially suppressed
• Integrate out heavy fieldsφ, χ andh to make

contact with EQCD
• Result: effective theory fora andAi

Llight = 1
2 TrF 2

ij + Tr[(Di a)2 + m2
a a2 + λ̃ a4]

• Leading order parameters solely fromV1

• SU(3)×SU(3) invariance guaranteesV0 does
not contribute

• Result:c̃1 = T + O(g2
3), c̃3 = 3

4π2T + O
( g2

3

T 2

)
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• At high enoughT tunnelings between different
vacua exponentially suppressed
• Integrate out heavy fieldsφ, χ andh to make

contact with EQCD
• Result: effective theory fora andAi

Llight = 1
2 TrF 2

ij + Tr[(Di a)2 + m2
a a2 + λ̃ a4]

• Leading order parameters solely fromV1

• SU(3)×SU(3) invariance guaranteesV0 does
not contribute

• Result:c̃1 = T + O(g2
3), c̃3 = 3

4π2T + O
( g2

3

T 2

)

• c̃2 andv undetermined, but not needed to ensure
new theory reproducesall EQCD predictions
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Z(3) domain walls
• To capture Z(3) physics of the full theory,

demand the effective one reproduce leading order
domain wall properties
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Z(3) domain walls
• To capture Z(3) physics of the full theory,

demand the effective one reproduce leading order
domain wall properties

• In effective theory, end up minimizing an energy
functional expressed in terms of the phases of the
eigenvalues ofZ
Fdw[α, β] ≡ Fgrad + Fsoft + Ffluc =

g−1
3 (πv̄ T )2 (2

3

√
T )3

∫

∞

−∞

dz̄
[

(α′)2 + 3(β′)2 + U1 + U2

]

with z̄ ≡ g3

√
Tz, v̄ ≡ v

T

BNL, 7/31/06 – p. 14/18



Z(3) domain walls
• In effective theory, end up minimizing

Fdw[α, β] ≡ Fgrad + Fsoft + Ffluc =

g−1
3 (πv̄ T )2 (2

3

√
T )3

∫

∞

−∞

dz̄
[

(α′)2 + 3(β′)2 + U1 + U2

]
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• Solve forα, β demanding that domain wall
tension and width agree with full theory values

• σYM = 8π2

9
T 3

g(T ) , ∆zYM = ln(4)−1/2
g(T ) T

BNL, 7/31/06 – p. 15/18



• Solve forα, β demanding that domain wall
tension and width agree with full theory values

• σYM = 8π2

9
T 3

g(T ) , ∆zYM = ln(4)−1/2
g(T ) T

• Result:v/T = 3.005868, c̃2 = 0.118914

1 2 3 4 5
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0.4
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1

z̄

F(z̄)/π2T 4

3
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Phase diagram of new theory
• Without perturbative matching, phase diagram

parametrized by 6 dimensionless constants
• With matching, overall scalev known and

only g2
3/v, mφ/mχ andmφ/v remain
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Phase diagram of new theory
• Without perturbative matching, phase diagram

parametrized by 6 dimensionless constants
• With matching, overall scalev known and

only g2
3/v, mφ/mχ andmφ/v remain

• Vmin = − v2

108g2

3

(9m2
φ − m2

χ) ⇒ Z(3) invariance

spontaneously broken atmφ/mχ . 1/3
• At weak coupling, strongly 1st order

transition atmφ/mχ = 1/3

• With finite g2
3/v, expect weakly 1st order

fluctuation induced transition
• In full theory, phase transition known to be

weakly 1st order⇒ latter scenario favored
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• Numerical simulations needed to study transition
and find optimal matching to full theory
• Match correlation lengths in various channels
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• Numerical simulations needed to study transition
and find optimal matching to full theory
• Match correlation lengths in various channels
• Simulations underway (Kajantie, Kurkela)
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Conclusions
• Z(3) invariant effective3d theory constructed for

pure SU(3) YM theory
• Perturbative matching to EQCD ensures

correct high temperature predictions
• Correct domain wall physics built in
• Phase structure similar to full theory
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Conclusions
• Z(3) invariant effective3d theory constructed for

pure SU(3) YM theory
• Perturbative matching to EQCD ensures

correct high temperature predictions
• Correct domain wall physics built in
• Phase structure similar to full theory

• Nonperturbative matching to full theory nearTc

and nontrivial numerical tests await
• Possible generalizations: addition of quarks

through soft Z(3) breaking terms, higherNc, . . .
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